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Abstract. We adapted the genetic algorithm to minimize the AMBER potential energy function. We 
describe specific recombination and mutation operators for this task. Next we use our algorithm to 
locate low energy conformation of three polypeptides (AGAGAGAGA,  A9, and [Met]-enkephalin) 
which are probably the global minimum conformations. Our potential energy minima are -94.71, 
-98.50,  and -48.94kcal /mol  respectively. Next, we applied our algorithm to the 46 amino acid 
protein crambin and located a non-native conformation which had an AMBER potential energy 
--150kcal/mol lower than the native conformation. This is not necessarily the global minimum 
conformation, but it does illustrate problems with the AMBER potential energy function. We believe 
this occurred because the AMBER potential energy function does not account for hydration. 
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1. Introduction 

A protein is a polymer of amino acids linked by peptide bonds (Figure 1). The 
amino acids are identical except at the points labeled $1, $2, and $3, which are 
called the sidechains. The sidechain of an amino acid determines its identity; 
there are 20 different naturally occurring amino acids, hence 20 possible side- 
chains, each of which has an individual chemical character and structure. The 
sequence of amino acids in a protein from one end to the other is known as its 
"primary" structure; there can be anywhere from a few to several thousand amino 
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Fig. 1. A three amino acid protein. The NH~'s are called amino groups while CO and 
CO2H are called carboxyl groups. Ca  refers to the carbon where the sidechain (S.) 
attaches. Torsion angles controlling the conformation are represented by curved arrows. 
The part of the molecule in brackets is the repeating amino acid monomer. 
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acids in a given protein. When a protein is synthesized, it rapidly assumes a 
unique conformation determined by its primary structure (Anfinsen, 1959, 1961, 
1973) which is called its "tertiary" or "native" structure. Determining the tertiary 
structure from the primary structure has been termed the "protein folding" 
problem. 

Although there are 3 n -  6 (where n is the number of atoms present) in- 
dependent variables which determine the tertiary structure of a protein, the bond 
lengths and bond angles, which account for 2/3 of these independent variables, 
are relatively fixed (Richardson, 1981). The major determinant of the tertiary 
structure is the rotation angle around the bonds, which is called the "torsion" or 
"dihedral" (Figure 1); each amino acid has anywhere from two to ten in- 
dependent dihedral angles. 

Many attempts have been made to reveal the underlying rules governing the 
protein folding process. Some have focused on predicting the secondary structure, 
an intermediate structural level between primary and tertiary. Secondary struc- 
ture breaks the primary structure into three classes: a-helix,/3-sheet, or random 
coil. It has been shown that the amino acids each show different tendencies to be 
in each structural class (Chou and Fasman, 1974). Secondary structure prediction 
is assumed to be a somewhat simpler task than determining the tertiary structure 
which could assist later tertiary structure predictions (Fasman, 1989). So far, it is 
at best approximately 65% accurate (Stolorz et al. ,  1991). Despite the application 
of neural networks (Qian and Sejnowksi, 1988; Holley and Karplus, 1989; Bohr et 

al . ,  1988; Kneller et al. ,  1990; Stolorz et al. ,  1991), and information theory 
(Garner et al . ,  1978; Gibrat et al. ,  1987; Lambert and Scheraga, 1989b) to this 
problem, there has been little improvement on this base rate of success nor is this 
level of knowledge of secondary structure been adequate to determine tertiary 
structure (Jaenicke, 1991; Stolorz et al. ,  1991). These methods appear to be 
limited by their failure to account for long range interactions (Jaenicke, 1991). 

Other methods focus on determination of the tertiary structure from first 
principles, or expand on the results of secondary structure predictions by incor- 
porating long range interactions (Skolnick and Kolinski, 1990; Cohen and Kuntz, 
1989). Many of these methods include a potential energy function which repre- 
sents the stability of a given polypeptide conformation or "conformer" (Weiner et 
al . ,  1986, Brooks et al. ,  1983, Momany et al. ,  1975). These functions consist of a 
set of - - n  z interaction terms depending on the form of the function which describe 
pairwise interactions between pairs of different atoms for the n atoms in the 
molecule. The function represents a classical approximation to the many-bodied 
Schr6dinger equation reduced to a set of two-body terms. In some functions such 
as C H A R M M  (Brooks et al . ,  1983) and AMBER (Weiner et al. ,  1986), every 
possible pairwise interaction is considered. In others such as ECEPP (Momany et 
al . ,  1975), certain interactions are ignored because parts of the molecule (most 
bond lengths and bond angles) are held rigid. Most of the interaction terms are 
"non-bonded" interactions. In AMBER, CHARMM, and ECEPP, these interac- 
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tions are described by a Lennard-Jones  potential which accounts for van der 
Waals attraction and repulsion (1): 

E V D W = [ ( ~ )  12-(niyt61'\ri]/ A (1) 

where EVD w is the van der Waals potential energy between atoms i and j, rij is the 
distance between atoms i and j, and Aij and Bij are empirically determined 
constants for atoms i and j. Additionally, electrostatic attraction/repulsion is 
modeled by a Coulomb equation (2): 

qiqj 
Eelectrostati c = , (2) 8r 6 

where Eelec t ros ta t i  c is the electrostatic potential energy between atoms i and j, qi 
and qj are the atomic charges on atoms i and j, rij is the distance atoms i and j, 
and e is the dielectric constant of the medium in which the molecule is located. 
The Lennard-Jones  potential dominates these interactions at short range, while 
the Coulomb equation dominates them at long range. As can be seen, there is a 
singularity in this equation when rij is zero. This leads to - n  2 singularities in the 
overall potential energy function of a given molecule. This is the main source of 
difficulty in locating the global minima of these potential energy functions. Terms 
which describe interactions between atoms connected by a path of three or fewer 
bonds are calculated differently. In A M B E R  and CHARMM, bonded atom 
interaction terms are calculated by using a harmonic oscillator equation with an 
equilibrium bond distance and a relatively large force constant to hold the bond 
distance fairly constant (3): 

Ebond = Kbond(rij - req)  2 , (3) 

where Ebond is the potential energy of the bond between atoms i and j, /(bond is a 
constant dependent on the type of bond, rij is the distance between atoms i and j, 
and req is the equilibrium atomic distance for this type of bond. These are mostly 
ignored in ECEPP as most bond lengths are held constant. The only bond 
interactions which are considered are those involving two sulfur atoms in a 
disulfide bridge. In A M B E R  and CHARMM,  an harmonic oscillator equation is 
also used for the interaction terms of atoms separated by two bonds, except that 
the angle defined by the three atoms in the path along the two bonds from one 
end atom to the other is used instead of the bond length to maintain equilibrium 
bond angles (4): 

Eangle = gOijk (Oij k --0eq) 2 (4 )  
2 

where Eangle is the potential energy of the bond angle between atoms i, j, and k, 
Oij k is the bond angle i-j-k, Ko~j~ is a constant depending on atoms i, j and k, and 0eq 
is the equilibrium bond angle. Again, these are mostly ignored in ECEPP except 
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for bond angle terms around a disulfide bridge. In AMBER and CHARMM, 
interaction terms for atoms separated by three bonds are given dihedral terms; 
these are modeled as a truncated Fourier series (5): 

Edihedral = ~m ~ [ 1 +  cos(mtkijkt - ')/ijkl)], (5) 

where Edihedra! is the potential energy of the dihedral angle between atoms i, j, k, 
and I, m ranges over all terms of the series, ~bijk~ is the dihedral angle between 
atoms i, j, k, and l, Vmijk l is an empirically determined constant for ~bijkt, and Yijkt 
is a phase angle for ~bijk~. In addition, this class of interaction terms is sometimes 
also given a partial non-bonded character by including a scaled contribution from 
(1) and (2) for atoms i and l. In ECEPP, only a subset of the dihedrals are 
allowed to vary, hence only a subset of the possible dihedral interactions are 
calculated. The sum of all of these pairwise interaction terms represents the total 
potential energy of the molecule (6). 

ETotal = ~ ff~g (rij -- req) 2 + ~ g--g~qk (Oijk -- Oeq) 2 
bonds angles 

+ ~ ~m ~ [l+cOs(rnc~ijkt-Zjkt)] 
dihedrals 

+ ~ [(~)12-(Biy)6+qiqi] .  (6)  

non-bonds X ri]/ F.rij 3 

Techniques based on the use of these potential functions are used to search for 
the conformation which returns the potential energy function's global minimum. 
In these techniques, it is assumed that the global minimum energy corresponds to 
the conformation representing the correct tertiary structure of the protein. This is 
a controversial assumption (Jaenicke, 1991). Simulated annealing (Wilson and 
Cui, 1990) and Monte Carlo techniques (Li and Scheraga, 1987, 1988; Skolnick 
and Kolinski, 1990), dynamic programming (Vajda and Delisi, 1990), distance 
geometry (Crippen, 1977), the ellipsoid algorithm (Billeter et al., 1987), gradient 
descent with constraints (Levitt, 1983), and a variety of other minimization 
techniques (Piela and Scheraga, 1989; Purisima and Scherga, 1987; Dudek and 
Scheraga, 1990; Lambert and Scheraga, 1989a, 1989b, 1989c; Crippen and Havel, 
1990; Lipton and Still, 1988) have been applied to such functions and have 
succeeded for relatively small proteins of 20 or fewer amino acids. In this paper, 
we investigate the application of the genetic algorithm to the minimization of the 
AMBER potential energy function which has the same form as (6) with partial 
non-bonded character in the dihedral terms as described above and an additional 
term similar to (1) that handles non-bonded interactions between polar hydrogen 
atoms and nitrogen and oxygen atoms (7). 
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ETotal: Z ~ ( r i ] - - r e q )  2-1- Z ~ (Oijk--0eq) 2 
bonds angles 

-I- Z [~m~[l+cos(m~)ijkl--'Yilk')] 
dihedrals 

.~_(Zij112_(nij)6..~ ] 
\ ril / \ ril [(~)12 (Bil~ [~ Di, l_Tol. + s 
non-bonds H-bonds ri] 

(7) 

For a more comprehensive introduction to the protein folding problem, see 
Richards (1991), Richardson and Richardson (1990) and Jaenicke (1991). 

2. The Genetic Algorithm 

The genetic algorithm is an optimization technique derived from the principles of 
evolutionary theory (Holland, 1975; Goldberg, 1989). It has been applied to a 
myriad of optimization problems such as the Traveling Salesman Problem, neural 
network optimization (Montana and Davis, 1989; Whitley et al., 1989a, 1989b, 
1990a, 1990b), scheduling (Cleveland and Smith, 1989), machine vision, pattern 
recognition, and the solution of non-linear equations. See Goldberg (1989) for a 
more complete review of these applications. Recently, it was applied to NMR 
refinement of small nucleotides (Lucasius and Kateman, 1989; Lucasius et al., 
1990). 

Figure 2 illustrates a traditional genetic algorithm (TGA) as described in 

procedure G A  
begin 

t = 0 ;  
initialize P(t); 
evaluate  s t r uc t u r e s  in P(t); 
while termination condition not satisfied do 
begin 

t = t + l ;  
select  P(t)  f r o m  P(t-1);  
r e c o m b i n e  s t ruc tu re s  in P(t);  
evaluate  s t r uc t u r e s  in P(t);  

end 
end. 
Fig. 2. A genetic algorithm. 
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Grefenstette and Baker (1989). First, the k independent variables of a mul- 
tivariate function are encoded in some fashion as genes on a chromosome. Next, a 
population of N chromosomes (hereafter known as P(t)) is initialized randomly. 
After this initialization step, the function value of the point in parameter space 
represented by each chromosome x is evaluated and called the chromosome's 
fitness u(x). Next, the algorithm cycles through rounds of selection, recombination 
and evaluation until termination conditions are met. 

During selection, a new population P(t + 1) is selected from P(t). A popular 
method is known as proportionate selection. This selects a given chromosome x 
for P(t + 1) with probability p(x) which is proportional to the ratio of its fitness 
relative to the mean fitness of the population g(t) (7). 

u(x) 
p ( x ) -  g ( t )  " (7) 

There are numerous other methods in use (Goldberg, 1989; Whitley and Hanson, 
1989a). 

During recombination, the genes in pairs of chromosomes in P(t + 1) (hereafter 
known as parents) are mixed together to produce hybrid chromosomes (hereafter 
known as children) via operators analogous to genetic crossover. There are many 
crossover operators in use (Booker, 1987; Schaffer and Morishima, 1987; Sirag 
and Weisser, 1987; Davidor, 1989; Goldberg, 1989). A typical operator, known as 
simple two-point crossover, creates a child containing all the genes from the 
beginning of one parent's chromosome up to a cut point, and the rest of its genes 
from that cut point to the end of the chromosome from the second parent. A 
second child can be created from the genes in both parental chromosomes which 
are not in the first child. After crossover, parts of the child's chromosome are 
altered slightly by operators analogous to genetic mutation. As with crossover, 
there are many mutation operators in use (Fogarty, 1989; Whitley and Hanson, 
1989a; Goldberg, 1989). A typical method is to give each of a child's genes a 
3-5% chance of being changed to a random value based on the value of a random 
variable. 

Finally, during evaluation, the fitnesses of the chromosomes in P(t + 1) are 
evaluated in the same manner as after initialization, and the process repeats until 
user specified termination conditions are met. Limited convergence theorems 
have been proven (Ankenbrandt, 1991; Davis and Principe, 1991). However, the 
success of the genetic algorithm up to this point has been shown mainly through 
empirical demonstrations. 

There are many variations on this basic theme, and there are several good 
introductions to the subject which cover both this basic approach (Wayner, 1991; 
Walbridge, 1989; Radcliffe and Wilson, 1990) and many of the variations 
(Goldberg, 1989). Holland (1975) presents a rigorous derivation of the genetic 
algorithm. 
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3. Our Genetic Algorithm 

Our genetic algorithm is known as a steady state genetic algorithm (SSGA). The 
main difference between TGA and SSGA is that P(t + 1) is identical to P(t) 
except for the possible introduction of a single new chromosome created by the 
selection of two chromosomes in P(t) and their subsequent recombination. In a 
TGA,  the entire population is regenerated at each step. This means that it is 
possible to lose a relatively fit chromosome and hinder the optimization process. 
Since most of the population is maintained in an SSGA, this will not happen. This 
frequently tends to speed up the optimization process when compared to TGA 
(Ackley, 1987). 

We have based our genetic algorithm on Whitley's GENITOR algorithm 
(1989a,b; 1990a,b) which has two distinctive features. The first feature is a rank 
based rather than fitness based selection function which awards many more 
reproductive opportunities to the fittest chromosomes in P(t) (8): 

( rx/N bias - ~/bias 2 - 4.0*(bias - 1.O)*rnd 0 

p(x)  = [Jrx-1/U 2.0*(bias - 1.0) ' (8) 

where r x is the rank of a given chromosome x if the population is sorted in order 
of decreasing fitness, bias is a user definable variable for the degree of focusing 
selection on the fittest members of the population, and rnd 0 is a random variable 
between zero and one. The selection function integrated in (8) is plotted in Figure 
3. The probability of selection, p(x) ,  decreases linearly with decreasing rank. The 

bias 
N 

slop bias-1 e_b a4 ) 

p(x) 

0.2N 0. N 0.6N 0.8N 
r X 

Fig. 3. Probability of selection versus rank using equation 8 with bias = 1.5. 
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second feature is a mutation operator  which bases its rate of mutation on the 
similarity of the two parents used to create the child it will operate on. However ,  
we have not followed G E N I T O R  verbatim. We have modified it in several ways 
which are described below. 

3.1. INITIALIZATION 

For  a given molecule, we encode each conformationally dependent  dihedral angle 
as a gene. We encode the dihedrals of the amino acids of a polypeptide in the 
order  of the primary sequence. For each amino acid, we use the internal order  ~b, 
~P, Xl, X2, �9 �9 �9 Xn. We have obtained our best results by encoding dihedral angles 
as floating point numbers. In all of  the runs reported here,  N is 200. After  we 
generate each chromosome, we compare the conformation it represents to a 
library of ECEPP based local minima conformers (Vasquez et al. ,  1983). We find 
conformer  it resembles the most, c, by the following metric (9): 

dihedrals  min(abs(Oc i _ Oti) ' 360 - abs(Oci - -  Oli)) 
d =  ~ (9) 

dihedrals* 180 i 

where Oxi represents the value of dihedral i in x and 0ti represents the value of 
dihedral i in a given conformer l in the minima library. The value of d can range 
from zero to one. Zero  indicates the two conformers are identical, and one 
indicates they are maximally different (all angles differ by exactly 180~ Once we 
have located c, we check that all dihedral angles in x are within +-20 ~ of the 
respective dihedral in c. For each dihedral 0xi that is not, we set it to Oci +- 

2 0 ~  . This step is a heuristic based on the assumption that in the global 
minimum conformation of the entire molecule, each of the individual amino acids 
should be in a conformation close to an individual local minimum. It reduces the 
size of the search space of each amino acid by a factor of 10 for small amino acids, 
and by as much as a factor of 10,000 for large ones. Finally, we evaluate the 
A M B E R  potential energy of the conformation represented by each chromosome 
x and use that as its fitness u(x) .  

3.2. SELECTION 

Selection in our algorithm is identical to G E N I T O R  and uses (8). We use 1.5 as 
our value for bias because that is what empirically gave the best performance.  
Lower  values led to longer optimization times, and higher values generally caused 
our  algorithm to fail. 

3.3. RECOMBINATION 

We use three different crossover operators here with adaptive probabilities 
(Davis, 1989). Initially these are chosen with equal probability. Each time a new 
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minimum energy conformer is created by one of these operators, the decrease in 
potential energy from the previous minimum is stored in a counter s i with one 
counter for each crossover operator i. Every 50 iterations of the main loop, we 
update 15% of the net probabilities for each of the three crossover operators 
based on the changes in the si during the last 50 iterations. The probability of 
choosing crossover operators which caused the most improvement are increased 
at the expense of the probabilities of choosing the less successful crossover 
operators. A minimum probability for each crossover operator of 3% is enforced 
to insure that each of the crossover operators are at least occasionally applied. 
The three crossover operators we used are illustrated in Figure 4. Figure 4(a) 
illustrates simple two-point crossover as described above. Figure 4(b) illustrates 
two-point wraparound crossover. In two-point wraparound crossover, the chro- 
mosome is treated as a ring: a child's chromosomes is created from an arc 
segment out of the first parent's chromosome and the complementary arc segment 
from the second parent's chromosome. This is thought to help transfer genes 
together which are on opposite ends of the chromosome which would otherwise 

Parent2 

A) Simple two-point  crossover 
Parent 1 

$ 
Offspring 

B) Two-pointwraparound crossover 

Parent1 Parent 2 Offspring 

C) Uniform crossover 

Parent 1 

Parent2 ': 

I 
+ 

$ 
Offspring 

Fig. 4. The three modes of crossover we use in our algorithm. 
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tend to be broken apart by simple two-point crossover. Figure 4(c) illustrates 
uniform crossover. In uniform crossover, each gene is taken from either parent 
with equal probability based on the value of a random variable. Uniform 
crossover also helps to solve distance dependent crossover problems, but it can 
also disrupt pairs of genes near one another that would otherwise be likely to be 
transferred together during crossover. 

Additionally, all three operators perform crossover only on the subset of the 
chromosome at which the parent's genes have an absolute difference greater than 
five degrees out of the maximum possible difference of 180. This subset of the 
chromosome is known as the reduced-surrogate (Booker, 1987). The use of 
reduced-surrogate based crossover helps maintain genetic variation in the popula- 
tion during long searches by forcing the child to be different from both of its 
parents. The genes of the child which are not part of the reduced-surrogate are set 
to the same values as the first parent. 

Although we also use a parental similarity dependent mutation rate as in 
GENITOR,  we vary the similarity dependence during the course of the run. The 
mutation rate m(x) is calculated two ways depending on the stage of the run. 
Initially, it is calculated using: 

re(x) = 0.3*d 2e~~ , (10) 

where d is the genetic distance between the child's as measured by (9), and e(t) is 
initially zero, but is incremented by one every 5,000 iterations during which no 
new minimum energy conformation is located. Once 25,000 iterations have passed 
during which no new minimum energy conformation is located re(x) is set to 0.1. 
When a mutation is performed on a gene, we bias it using (8) and use r x allowed 
to range from one to 180 with a randomly determined sign as a disp!acement 
added to the mutated gene's current value. This favors small displacements in the 
dihedral angles over large ones and seems to improve performance. This behavior 
has been seen in other genetic algorithms using floating-point representation for 
genes (Janikow and Michaelewicz, 1991). 

After  crossover and mutation have been performed on the child, it is compared 
to the conformer library as described in the initialization and adjusted to resemble 
the most similar conformer in this library if necessary. 

3.4. EVALUATION 

The A M B E R  potential energy of the conformation represented by the child's 
chromosome is now calculated and used to determine whether it will be inserted 
into P(t). Initially, this is determined by locating the member of P(t) most similar 
to the newly created child x via (9). If x has a lower potential energy than this 
member of P(t), it replaces it. Otherwise, x is discarded. This implements a 
variation of phenotypic sharing (Goldberg, 1987) because it helps to maintain 
diversity by rewarding the exploration of unexploited low energy regions of the 
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search space. After 25,000 iterations have passed without locating a new mini- 
mum energy conformer, only the members of P(t) with higher potential energies 
than x are considered for replacement. This is done to focus the search and 
converge the population so the program will terminate. 

3.5. T E R M I N A T I O N  

The program is terminated if any of the following conditions are met: 100,000 
iterations have passed without locating a new minimum energy conformer, the 
variance of the potential energies of P(t) is less than 0.1, or the average distance 
between 200 randomly selected pairs of chromosomes in P(t) as measured by (9) 
is less than 0.1. Otherwise, the cycle of selection, recombination, and evaluation 
continues. 

4. Results 

We applied this algorithm to the nine amino acid polypeptide ala-gly-ala-gly-ala- 
gly-ala-gly-ala and obtained almost identical results in nine out of ten runs (Figure 
5) with an average RMS displacement of less than 0.01/~ between successful 
runs. The final conformation we obtained is an a-helix. In the successful runs, the 
final potential energies ranged from -94.69 to -94.78 kcal. In every run, most of 
the backbone is oriented as an a-helix, but in the one failure, the only substantial 
difference from the nine other runs appears at the carboxyl end of the helix, 
where the final carboxyl group is improperly oriented relative to the rest of the 
helix. Glycine helices have been found as global minimum structures by other 
groups (Ripoli et al., 1991), but glycine is known as a helix-breaking residue 
which suggests that this is an unrealistic structure for this molecule in solution. 

Fig. 5. Superimposit ion of 10 runs  on A G A G A G A G A .  
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Glycine is the most flexible amino acid, and it is probable that there are many low 
energy structures which would be sampled by this polypeptide were it synthesized 
and placed in solution, outweighing this helical structure by sheer number 
(Chakrabarty et al., 1991). Each of these runs took an average of two hours of 
CPU time on an SGI IRIS 4D/220 (240,000 iterations). 

Similarly, we consistently located the same minimum energy conformation of 
Ala 9 in nine out of ten runs. The final potential energies of these successful runs 
ranged from -98.42 to -98.50kcal. The final conformation we obtained is an 
a-helix (Figure 6). The average RMS displacement between the successful runs is 
less than 0.01 A. The one unsuccessful run is identical to the nine others except 
that it has a slightly misaligned carboxyl terminal which raised its potential energy 
by approximately 0.7kcal. Contrary to the above polypeptide, alanine rich 
polypeptides are known to form a helical structure in solution (Marqusee et al., 
1989). These runs also consumed approximately two hours of CPU time on the 
same machine (240,000 iterations). 

Next, we applied our algorithm to [Met]enkephalin which has been minimized 
under ECEPP by several groups (Li and Scheraga, 1987; Purisima and Scheraga, 
1987; Vajda and Delisi, 1990) who have located the same minimum energy 
structure for this molecule. Initially, we consistently converged to a structure 
which bore little resemblance to theirs, and which had a higher potential energy 
( ~ - 4 2  kcal) than their structure (~-47.2  kcal) after extensive gradient minimiza- 
tion of its AMBER potential energy. However, when we slightly altered several 
bond angles and bond distances of our amino acids near the alpha carbon which 
are not otherwise varied during a run, we obtained a structure more similar to 
that found by the other groups in eight out of ten runs (Figure 7) all of which had 
lower potential energy than their structure, with basically identical backbone 
structure in all ten runs. Although we have a similar hydrogen bond geometry to 
the ECEPP minimum energy structure, ours is basically different from theirs. 
Given that we are working with a completely different force field, and in the 
absence of solvent, this is not worrisome. This may also serve as a caveat against 
restricting conformational search solely to dihedral angles. It may help to give 
bond angles which are observed to vary in crystal structures a small degree of 

Fig. 6. Superimposition of 10 runs on A A A A A A A A A .  
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Fig. 7. Superimposition of 10 runs on [Met]Enkephalin. 

flexibility. In the nine successful runs, our final potential energies ranged from 
-48.67 to -48.94kcal ,  and had an average RMS displacement of <0 .02A 
between successful runs. The conformation generated by the one completely 
unsuccessful run has a properly oriented backbone, but improperly oriented 
sidechains. A second run properly oriented everything except for the methionine 
sidechain. As with the two previous polypeptides, these runs consumed an 
average of approximately two hours of CPU time (250,000 iterations) on our 
IRIS. 

One of our hopes was that the encoding of the dihedrals in the order of the 
primary sequence would favor the creation of small groups of linked dihedral 
genes. In all three of these minimizations, individuals which strongly resemble the 
final minimum energy conformation, but with much higher potential energy, 
appear early on in the population. These conformers can be observed in the 
playback of the minimization process. This indicates that such groups of dihedral 
genes do arise and that this is a suitable task for the genetic algorithm. 

Next, we applied our algorithm to the 46 amino acid protein crambin and 
obtained ambiguous results. This was only run once because it required a week of 
CPU time on our heavily used IRIS and therefore our algorithm took a month to 
complete. Although the final conformation is not necessarily the global minimum 
conformation, it has an AMBER potential energy 150 kcal lower than that of the 
known crystal structure (Figure 8 and 9). Unfortunately, our final conformation 
bears little resemblance to the known crystal structure. Brooks et al. has stated 
that the minimum of a potential energy function for a large molecule in the 
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Fig. 8. Alpha carbon trace of our crambin structure (left) and the correct one (right). 

/ 
--V 

Fig. 9. Our final crambin structure (left) and the correct structure (right). 

absence of solvent would be an "inside-out" protein (1988). Large sidechains 
would stick out of the protein, and small polar sidechains would be closely paired 
with other  such sidechains in its interior. Our protein resembles an inside-out 
protein so our results may correspond to this situation. Our final structure appears 
to be mainly stabilized by electrostatic interactions and hydrogen bonds between 
the backbone and polar sidechain groups (Figure 9). This may indicate that 
protein folding algorithms must account for hydration, which is believed to be a 
driving force for protein folding (Baldwin and Eisenberg 1987; Baldwin 1989; 
Khechinashvili 1990). 
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5. Conclusions 

The genetic algorithm is an effective method of searching the conformational  
space of small molecules which may eventually be successfully applied to small 
proteins.  This will require accounting for hydration. Several models  for this exist 
which t reat  it as an additional potential  energy te rm (Eisenberg and McLachlan,  
1986, Ooi et al., 1987). We are currently experimenting with these models,  and 
we are also investigating a parallel implementat ion of our genetic algorithm 

(Tanese,  1989; Whitley and Starkweather,  1990b; Mfihlenbein, 1989) for use on 
larger molecules and more  elaborate  potential  energy functions. 
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